

INFORME ANUAL N°3

Plan de Manejo Biótico

Proyecto "Modificaciones y Mejoramiento del Sistema de Pozas de Evaporación Solar en el Salar de Atacama (RCA RE N°21/2016)"

ANEXO I

Vegetación y Flora

Monitoreo Invierno 2018 Monitoreo Verano 2019

Región de Antofagasta

Agosto de 2019

TABLA DE CONTENIDOS

1	Ar	nex	os d	e vegetad	ión y flor	a								4
	1.1	С	arta	Comunid	ad Ataca	meña	de	Tocol	nao	indica	ando	suspe	nsión	de
	mon	itor	eos											4
	1.2	С	artog	grafía COT	(Invierno	2018 -	- Vera	no 20	19)					5
	1.2	2.1	Ar	chivos PDI	- Cartograf	fía CO	Γ (Invi	erno 2	2018)					5
	1.2	2.2	Ar	chivos PDI	- Cartograf	fía CO	Γ (Ver	ano 20	019).					5
	1.3	C	artog	grafía Vege	etación Ac	tiva (N	DVI)	(Verai	no 20)19)				5
	1.3	3.1	Ar	chivos JPC	G Cartograf	ía Veg	etació	n Acti	va N	DVI (V	erano	2019).		5
	1.4	M	etad	ata de imá	genes sat	elitales	s – Pl	eiades	s 1A.					5
	1.4	4.1	Ar	chivos PDI	- Metadata	IMG I	nviern	o 201	8					5
	1.4	4.2	Ar	chivos PDI	- Metadata	IMG V	/erand	2019)					5
	1.5	Fi	icha	de terrenc	para la to	oma de	dato	s cor	ı el n	nétodo	inter	cepto	de pun	tos
	(Poi													
	1.6	R	esun	nen de col	perturas de	esde L	ínea l	Base ((LB) .					7
	1.7				s de anális									
	1.8	E	vider	ncias de q	uemas en	los se	ctores	s Tilo	pozo	y Peir	ne			. 24
	1.8	8.1		-	del área af			-		•				
	20	17)		•			•					•	•	
	1.8	8.2	E۱	∕idencias d	e quema e	n secto	r Peir	ne (vei	rano	2019).				. 30
					•			`		,				
						FIG	URAS	5						
										_		_		
Fig	gura	N°			promedio d					•		•		
			n	nonitoreos	M1, M2, M	3, M4,	M5 y	M6: h	erbaz	zales y	mator	rales		. 15
Fi	aura	Ν°	1_2	Cohertura	absoluta	de las	s Asn	ecies	regio	stradas	en l	ae tran	neertae	d۵
1 13	gura	1 1			Base 0 (ME		•		•					
					Distichlis s	,				•				
			''	cibazai de	Distictilis	spicata								. 17
Fig	gura	N°	1-3.	Cobertura	absoluta	de las	s esp	ecies	regis	stradas	en la	as trar	sectas	de
			Ν	Monitoreo E	Base 0 (ME	30), M ²	1, M2	, M3,	M4,	M5 y I	M6, er	ı la for	mación	de
			h	erbazal de	Schoenop	lectus	califor	nicus'	k 					. 18
					•									
Fi	gura	N°			absoluta		•		•					
					Base 0 (ME	,				•				
			h	erbazal de	Juncus ba	lticus								. 19
- :	aure	ΝIO	1 5	Cohortura	o obookuta	do los		ooioo	rogia	atro do a	on l	oo tron	nactas	4~
ГI	yura	IN			absoluta		-		_					
					Base 0 (ME	,				-				
			n	erbazai de	Triglochin	CONCIN	11a							. ∠∪

Figura N° 1-6. Cobertura absoluta de las especies registradas en las transectas o Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación o matorral de Sarcocornia fruticosa*	de
Figura N° 1-7. Cobertura absoluta de las especies registradas en las transectas d Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación d matorral de <i>Tessaria absinthioides</i>	de
Figura N° 1-8. Ubicación superficie afectada por el incendio en el sector Tilopozo 2	26
Figura N° 1-9. Imagen RGB obtenida desde el Drone (altura 500 m) en el sector Tilopoz	
Figura N° 1-10. Clasificación de la vegetación según el daño visible por el incendio 2	28
Figura N° 1-11. Análisis en base a imagen de alta resolución con falso color, en el área o quema del sector Peine, con fecha de los monitoreos de verano de 2018 2019	у
Figura N° 1-12. Análisis de NDVI en el área de quema del sector Peine, en base a image de alta resolución con fecha de los monitoreos de verano de 2018 y 2019.	9.
3	32
TABLAS	
TABLAS Tabla N° 1-1. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e formación de <i>Distichlis spicata</i> .	en
Tabla N° 1-1. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e	en . 7 de en
Tabla N° 1-1. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e formación de <i>Distichlis spicata</i> . Tabla N° 1-2. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e	en .7 de en .8 de
 Tabla N° 1-1. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e formación de <i>Distichlis spicata</i>. Tabla N° 1-2. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e formación de <i>Schoenoplectus californicus</i>. Tabla N° 1-3. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 e 	en . 7 de en . 8 de en . 8 de en

	Riqueza y Cobertura absoluta y promedio de las transectas en Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6*11
	Cobertura absoluta promedio de otros recubrimientos en las transectas en Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6
	Cobertura promedio por sectores, para el Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6*
	Composición de especies vasculares por sectores, para el Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6*
Tabla N° 1-7. S	Superficie afectada respecto de la COT
Tabla N° 1-8. S	Superficie parcial y severamente afectada por incendio
	FOTOGRAFÍAS
5 4 6 1 1 1 1 1 1 1 1 1 1	(
Fotografia N° 1	I-1. A) Daño parcial en la vegetación, B) Daño severo en la vegetación 27
-	1-2. C) Vista general de la transecta T19, D) Vista general de la transecta T29
•	1-3. E) Avance subterráneo del incendio T19, D) Renovación general de la vegetación
-	1-4. Presencia de quemas en las transectas VPR003, T01 y T03 en el sector de Peine

1 ANEXOS DE VEGETACIÓN Y FLORA

1.1 Carta Comunidad Atacameña de Toconao indicando suspensión de monitoreos.

Ley 19.253 República de Chile Rut 73.127.600 - 5

Toconao 12 de Marzo de 2019

Señor: Cristóbal Pavez Coordinador Relaciones Comunitarias Salar Albemarle PRESENTE

Junto con saludarle y por intermedio de la presente, el Directorio de la Comunidad Atacameña de Toconao, informa que se determinó suspender monitoreo los cuales se debe a los siguientes motivos; aumento en las solicitudes de autorizaciones de ingreso al Salar, lo cual genera mayor demanda en HHs de nuestro personal, de igual forma es relevante señalar que sus requerimientos de monitoreo son generalmente por varios días en el mes y finalmente estas solicitudes son de varias empresas, es por esta razón que se ha solicitado a Conaf trabajar en conjunto un protocolo de monitoreo en el sector, con la finalidad de ordenar y el motivo principal resguardar nuestra Reserva Nacional Los Flamencos, por consiguiente dicha medida se considerará hasta el 31 del presente mes, ante cualquier eventualidad se les comunicará vía formal.

Desde ya esperamos que la presente tenga muy buena acogida y comprensión por vuestra parte.

Se despide atentamente.

COMUNIDAD ATACAMENA TOCONAO II REGION LEY 19253 CHILE

Pro Tesorera Comunidad Atacameña de Toconao

1.2 Cartografía COT (Invierno 2018 – Verano 2019).

1.2.1 Archivos PDF Cartografía COT (Invierno 2018)

Archivo: "Anexo Vegetacion flora Cartografía COT (Invierno 2018).PDF"

1.2.2 Archivos PDF Cartografía COT (Verano 2019)

Archivo: "Anexo_Vegetacion_flora_Cartografía_COT_(Verano 2019).PDF"

1.3 Cartografía Vegetación Activa (NDVI) (Verano 2019).

1.3.1 Archivos JPG Cartografía Vegetación Activa NDVI (Verano 2019)

Archivo: "Anexo_Vegetacion_Activa_NDVI_(Verano2019).PDF"

1.4 Metadata de imágenes satelitales – Pleiades 1A

1.4.1 Archivos PDF Metadata IMG Invierno 2018

Archivo: "Metadata de imágenes satelitales - Pleiades 1A (Invierno 2018).PDF"

1.4.2 Archivos PDF Metadata IMG Verano 2019

Archivo: "Metadata de imágenes satelitales – Pleiades 1A (Verano 2019).PDF"

1.5 Ficha de terreno para la toma de datos con el método intercepto de puntos (Point Quadrat).

						FOF	MULARIO	"Vege	tación 2	Zonal"			REG 11-	02
		EDI	7 E	M			ROYECTO				guimien	ito amb	iental All	bemarle
(LO	CALIZACIĆ	N:						
`						Tra	ansecta (PN	И):			Orie	ntaciór	1	
	sponsables:						ción cart-C							
Campaña/l							ción Vegeta							
Coordenad			N:				ies dominar							
Coordenad			N:				de Alterac							
Altitud (m):	:						nido de hun		No				Sobres	
N° fotos:						% Aftic	ramiento s	alino		1	/ 2	/ 3	/ 4 /	5
Int(m)	sp1		sp2	sp3	8	p4	Int(m)	s	p1	sı	12	s	р3	sp4
0,1	ор.				Ť	Р.	6,3		P :				Po	ор.
0,2							6,4							
0,3							6,5							
0,4 0,5							6,6 6,7					-		
0,6							6,8							
0,7							6,9							
0,8							7							
0,9							7,1							
1 1 1							7,2 7.3			<u> </u>		<u> </u>		
1,1 1,2		-					7,3 7,4							
1,3							7,5							
1,4							7,6							
1,5							7,7							
1,6 1,7							7,8 7,9							
1,7							8							
1,9							8,1							
2							8,2							
2,1							8,3							
2,2							8,4 8,5							
2,3							8,6							
2,5							8,7							
2,6							8,8							
2,7							8,9							
2,8							9 9,1					-		
3							9,1							
3,1							9,3							
3,2							9,4							
3,3							9,5							
3,4 3,5							9,6 9,7					-		
3,6							9,8							
3,7							9,9							
3,8							10							
3,9							10,1							
4,1							10,2 10,3							
4,1							10,3							
4,3							10,5							
4,4							10,6							
4,5							10,7							
4,6 4,7							10,8 10,9							
4,7							10,9							
4,9							11,1							
5							11,2							
5,1							11,3							
5,2							11,4							
5,3 5,4		- -					11,5 11,6					<u> </u>		
5,5			1				11,7		_	\vdash	+-	l -		
5,6							11,8							
5,7							11,9							
5,8							12			<u> </u>		<u> </u>		
5,9 6							12,1 12,2					<u> </u>		
6,1		-			<u> </u>		12,2							
6,2							12,4							
					_									

Fuente: Cedrem Consultores.

1.6 Resumen de coberturas desde Línea Base (LB)

A continuación, se presentan tablas comparativas de los resultados de la línea de base en el año 2014 (Anexo 2 Plan de Manejo Biótico 2015) junto a los resultados de los Monitoreos del primer año de seguimiento, correspondientes a invierno 2016 (M1) y verano 2017 (M2), los Monitoreos del año 2, correspondientes a invierno 2017 (M3) y verano 2018 (M4), y los Monitoreos del tercer año de seguimiento, correspondientes a invierno 2018 (M5) y verano 2019 (M6). Éstos se presentan por formación vegetal, y para dar cuenta de lo que pudo ser comparado, se entrega toda la información de las transectas para saber que tiene y no tiene información previa de línea de base. Es importante recordar, que los datos de línea de base son comparables en términos generales a nivel de la unidad en cada formación vegetal (punto de línea base asociada a una transecta más cercana) y no de forma específica como lo aborda el plan de seguimiento con la propuesta metodológica del monitoreo de transectas, ya que los puntos de línea de base no corresponden espacialmente a la misma ubicación de las transectas de los monitoreos y, asimismo, la aplicación del método presenta algunas diferencias, por ejemplo la falta del registro de cobertura muerta, por lo cual ésta no es presentada.

Tabla N° 1-1. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 en formación de *Distichlis spicata*.

																	Espec	ies														
secta	ector	РМ			ı	Distichli	s spicat	a					Ва	ccharis	junce	а			Juncus balticus			Lycium	humile	9		Nitro _l atacam		Scho	enople	ectus c	aliforni	cus
Transecta	Subs	LB	L	В	Anu	al 1	Anu	ıal 2	Anı	ıal 3	L	В	Anı	ıal 1	Anu	ıal 2	Anu	al 3	Anual 1	Anι	ıal 1	Anu	al 2	Anι	ual3	Anual 1	Anual 2	Anual 1	Anu	al 2	Anu	ıal 3
			abril 2014	julio 2014	M1	M2	М3	M4	M5	М6	abril 2014	julio 2014	M1	M2	МЗ	M4	М5	М6	M1	M1	M2	М3	M4	М5	М6	M2	M4	M2	МЗ	M4	М5	М6
T08	Р	49	30,0%	30,0%	42,6%	35,6%	22,8%	19,8%	27,0%	26,2%	30,0%	30,0%	4,2%	2,2%	3,8%	0,8%	0,8%	0,8%														
T09	Р				21,6%	22,6%	22,0%	21,6%	22,2%	29,4%																						
T20	Т				36,4%	21,4%	32,0%	37,2%	30,4%	19,2%																0,2%	0,2%					
T21	Т				2,4%	5,2%	3,8%	3,8%	4,4%	3,8%										0,6%	0,2%	0,8%			0,6%							
T22	Т				14,8%	6,4%	11,8%	10,4%	10,2%	11,6%									3,2%	2,4%	2,4%	3,8%	3,8%	4,6%	6,4%			1,2%	1,6%	1,6%	1,2%	2,8%
T26	Т	25	10,0%	10,0%	7,8%	1,2%	5,4%	2,8%	1,0%	1,6%																						
T27	Т				5,8%	1,8%	3,8%	4,6%	4,0%	4,4%																						
T28	Т		·			21,8%	21,2%	21,0%	19,0%	18,2%	·																					

Donde: LB: resultados línea de base; Anual 1: resultados de monitoreos invierno 2016 (M1) y verano 2017 (M2); Anual 2: resultados de monitoreos invierno 2017 (M3) y verano 2018 (M4); Anual 3: resultados de monitoreos invierno 2018 (M5) y verano 2019 (M6). Códigos subsectores: P= Peine; T= Tilopozo.

Tabla N° 1-2. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 en formación de *Schoenoplectus californicus*.

																Espec	ies													
ransecta	ector	РМ			Distichli	s spicata	,				ı	Bacchari	is juncea	,					School	enoplectu	s californ	nicus				Sai	rcocorn	nia frutio	cosa	
ran	sqn	LB	Anu	al 1	Anu	ıal 2	Anu	ıal 3	LI	В	Anu	al 1	Anu	al 2	Anι	al 3	L	В	Anu	ıal 1	Anu	al 2	Anu	ıal 3	Anu	ıal 1	Anu	al 2	Anı	ual 3
-	S		M1	M2	М3	M4	M5	М6	abril 2014	julio 2014	M1	M2	М3	M4	M5	М6	abril 2014	julio 2014	M1	M2	М3	M4	M5	М6	M1	M2	М3	M4	M5	М6
T01	Р		26,8%	46,8%	35,8%	21,0%	21,0%	24,8%			14,6%	21,0%	19,0%	13,6%	15,8%	11,4%			76,2%	95,8%	97,6%	87,2%	94,4%	91,8%	0,6%	1,0%	1,0%	0,6%	1,0%	2,0%
T02	Р		4,6%	15,6%	11,4%	9,4%	11,2%	14,0%			13,6%	41,6%	27,6%	38,0%	33,4%	45,8%			60,2%	67,2%	57,0%	57,4%	39,4%	72,4%	0,2%	0,6%	0,6%	0,8%	0,2%	0,8%
T03	Р			0,2%		1,2%	1,0%	3,8%			27,0%	33,8%	28,2%	22,8%	27,0%	33,6%			86,6%	100,0%	100,0%	72,2%	81,2%	83,8%					0,2%	
T04	Р		30,6%	67,2%	62,2%	57,2%	62,8%	70,0%			11,0%	16,8%	9,8%	14,6%	17,4%	15,8%			87,2%	95,4%	96,6%	85,4%	97,4%	97,8%	1,8%	2,6%	2,0%	3,0%	1,2%	2,0%
T19	Т	38	14,2%	18,4%	16,4%	14,8%	15,0%	11,6%	50,0%	50,0%	9,2%	38,0%	32,6%	37,0%	35,4%	35,0%	50,0%	50,0%	100,0%	100,0%	100,0%	99,2%	87,4%	99,8%						
T29	Т	38	14,2%	2,0%	2,0%	3,4%	2,4%		50,0%	50,0%	9,2%		27,8%			35,0%			100,0%	100,0%		99,8%	99,2%							

Donde: LB: resultados línea de base; Anual 1: resultados de monitoreos invierno 2016 (M1) y verano 2017 (M2); Anual 2: resultados de monitoreos invierno 2018 (M4); Anual 3: resultados de monitoreos invierno 2018 (M5) y verano 2019 (M6). Códigos subsectores: P= Peine; T= Tilopozo.

Fuente: Elaboración propia.

Tabla N° 1-3. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 en formación de Sarcocornia fruticosa.

														Esp	ecies												
ecta	ctor	PM			Sa	rcocorni	ia frutico	osa					Puccii	nellia fr	rigida			1	Nitrophi	la ataca	mensis			Triglo	chin co	ncinna	3
rans	Subsec	LB	L	В	Anu	ıal 1	Anu	al 2	Anu	al 3	L	В	Anu	ıal 1	Anu	ıal 2	Anual 3	Anu	al 1	Anu	al 2	Anual 3	Anu	al 1	Anu	al 2	Anual 3
	o,		abril 2014	julio 2014	M1	M2	М3	M4	M5	М6	abril 2014	julio 2014	M1	M2	МЗ	M4	M5	M1	M2	М3	M4	M5	M1	M2	МЗ	M4	M5
T12	LP	54	50,0%	50,0%	37,0%	26,6%	32,6%	28,0%	31,0%	23,6%	20,0%	20,0%	0,8%	0,4%		0,2%							0,8%	0,2%			
T15	AQ	FVQ2*		72,5%	27,4%	25,6%	29,8%	25,2%	26,2%			7,5%	6,0%	5,8%	4,6%	3,2%	5,0%	19,0%	14,8%	12,6%	8,6%	8,2%	0,2%	0,4%	0,2%	0,4%	0,4%
T16	AQ				16,8%	14,2%	11,0%	10,6%	13,0%																		
T17	AQ	FVQ4*		42,5%	52,2%	45,8%	48,0%	43,8%	47,8%																		

Donde: LB: resultados línea de base; Anual 1: resultados de monitoreos invierno 2016 (M1) y verano 2017 (M2); Anual 2: resultados de monitoreos invierno 2018 (M4); Anual 3: resultados de monitoreos invierno 2018 (M5) y verano 2019 (M6). Códigos subsectores: LP: La Punta; AQ= Aguas de Quelana.

Tabla N° 1-4. Cobertura absoluta de resultados de línea base en 2014 y resultados de Monitoreos de invierno 2016-2017-2018 y verano 2017-2018-2019 en formación de *Tessaria absinthioides*.

												Es	pecies								
secta	sector	PM LB			Di	stichlis	spicata						Tessar	ria absin	thioide	5			Atriplex atacamensis	Cistanthe densiflora	Tiquilia atacamensis
īa	Sub		L	В	Anι	ıal 1	Anu	ıal 2	Anı	ıal 3	L	В	Anu	al 1	Anu	al 2	Anι	ıal 3	Anual 3	Anual 3	Anual 3
_	,,		abril 2014	julio 2014	M1	M2	М3	M4	M5	М6	abril 2014	julio 2014	M1	M2	М3	M4	M5	М6	M6	M6	М6
T05	Р	5									30,0%	22,5%	8,0%	7,6%	5,8%	5,0%	5,6%	5,0%			
T06	Р	5			6,4%	3,0%	4,8%	3,4%	1,4%	2,2%	30,0%	22,5%	18,2%	11,2%	8,8%	11,4%	13,0%	7,8%			
T07	Р	5									30,0%	22,5%	20,4%	13,6%	9,4%	16,4%	14,4%	10,4%	0,2%	0,2%	0,2%
T23	Т	37/32	5%/10%	5%/10%							65%/30%	65%/30%	17,2%	9,8%	10,4%	6,4%	11,8%	4,8%			
T24	Т	37/32	5%/10%	5%/10%	23,2%	16,8%	23,6%	11,8%	30,0%	14,2%	65%/30%	65%/30%	40,2%	16,4%	27,6%	16,0%	33,2%	15,2%			
T25	Т	37/32	5%/10%	5%/10%	8,0%		8,60%	3,80%	6,4%	2,6%	65%/30%	65%/30%	9,4%	8,6%	7,6%	5,4%	6,4%	4,2%			

Donde: LB: resultados línea de base; Anual 1: resultados de monitoreos invierno 2016 (M1) y verano 2017 (M2); Anual 2: resultados de monitoreos invierno 2018 (M4); Anual 3: resultados de monitoreos invierno 2018 (M5) y verano 2019 (M6). Códigos subsectores: P= Peine; T= Tilopozo.

1.7 Tablas y gráficos de análisis de cobertura desde Monitoreo Base 0

Tabla N° 1-5. Características físicas del suelo en las transectas en monitoreos de invierno y verano, M1, M2, M3, M4, M5 y M6.

	L	cta	Contenido Humedad	Afloramiento salino										
Formación vegetal	Sub	Transecta		//1 no 2016)		M2 no 2017)		M3 no 2017)		//4 io 2018)		M5 no 2018)		л6 10 2019)
	Р	T08	Ns	>80%	Ss	>80%	Ns	>80%	Ns	>80%	S	>80%	S	10-30%
	Р	T09	S	>80%	Ns	>80%	Ns	>80%	Ns	30-50%	Ns	>80%	S	50-80%
		T20	Ns	>80%	Ns	>80%	Ns	>80%	Ns	30-50%	Ns	>80%	Ns	30-50%
Herbazal de Distichlis		T21	Ns	>80%	Ns	>80%	Ns	>80%	Ns	>80%	Ns	50-80%	Ns	>80%
spicata	т [T22	Ns	>80%	S	>80%	Ns	>80%	Ns	>80%	Ns	50-80%	S	50-80%
5,000	' '	T26	Ns	>80%	Ns	>80%	Ns	>80%	Ns	50-80%	Ns	50-80%	Ns	>80%
		T27	Ns	10-30%	Ns	10-30%	Ns	<10%	Ns	10-30%	Ns	<10%	Ns	10-30%
		T28	Ns	>80%	Ns	>80%	Ns	50-80%	Ns	>80%	Ns	30-50%	Ns	>80%
	LP	T13	Ns	>80%	S	>80%	Ns	>80%	Ns	>80%	Ns	>80%	Ns	50-80%
Herbazal de		T18	Ns	>80%	S	>80%								
Juncus balticus	Т	T30	Ns	>80%										
		T31	Ns	>80%	S	>80%	Ns	>80%	Ns	>80%	Ns	>80%	Ns	>80%
		T01	Ss	<10%	Ss	10-30%	Ss	<10%	Ss	<10%	Ss	<10%	Ss	<10%
	Р	T02	S	<10%	S	<10%	Ss	<10%	Ss	<10%	S	<10%	S	<10%
Herbazal de	Р	T03	S	<10%	Ss	<10%	S	<10%	S	<10%	S	<10%	Ss	<10%
Schoenoplectus californicus		T04	Ns	<10%	Ss	<10%	Ns	<10%	S	<10%	S	<10%	S	<10%
odiii oi i ii odo	т	T19	Ns	<10%	S	<10%								
	' '	T29	Ss	<10%										
Herbazal de	LB	T10	Ns	>80%	Ns	>80%	Ss	>80%	Ns	>80%	S	>80%	Ns	>80%
Triglochin concinna	LP	T11	Ss	>80%	Ss	>80%	Ss	>80%	Ss	50-80%	Ss	>80%	Ss	>80%
	LP	T12	Ns	>80%	S	>80%	S	>80%	Ns	>80%	S	10-30%	S	10-30%
Matorral de		T15*	S	50-80%	S	>80%	Ss	>80%	S	>80%	Ns	50-80%	-	-
Sarcocornia fruticosa	AQ	T16*	S	>80%	S	>80%	Ss	>80%	S	>80%	S	>80%	-	-
		T17*	Ss	>80%	Ss	>80%	Ss	50-80%	S	>80%	S	<10%		-
Matorral de		T05	Ns	<10%	Ns	>80%	Ns	50-80%	Ns	<10%	Ns	<10%	Ns	30-50%
Tessaria	Р	T06	Ns	<10%	Ns	<10%	Ns	50-80%	Ns	<10%	Ns	<10%	Ns	30-50%
absinthioides		T07	Ns	<10%	Ns	10-30%	Ns	10-30%	Ns	<10%	Ns	<10%	Ns	<10%

		cta	Contenido Humedad	Afloramiento salino										
Formación vegetal	Sub secto	Transe		M1 no 2016)		M2 no 2017)		//3 no 2017)		И4 no 2018)		M5 no 2018)		И6 10 2019)
		T23	Ns	50-80%	Ns	>80%	Ns	30-50%	Ns	30-50%	Ns	30-50%	Ns	30-50%
	Т	T24	Ns	50-80%	Ns	>80%	Ns	50-80%	Ns	>80%	Ns	10-30%	S	10-30%
		T25	Ns	>80%	Ns	>80%	Ns	50-80%	Ns	10-30%	Ns	30-50%	S	10-30%
Área desprovista de vegetación	s	T14	-	-	-	-	-	-	-	-	-	-	-	-

Donde: Contenido de Humedad: Ns= No saturado, S= Saturado, Ss= Sobresaturado

Códigos subsectores: P= Peine; T= Tilopozo; LP: La Punta; LB= La Brava; AQ= Aguas de Quelana; S= Soncor.

Tabla N° 1-6. Riqueza y Cobertura absoluta y promedio de las transectas en Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6*.

	cta	ō								C	obert	ıra ve	getació	ón (%)												ertura s recu							queza			
Formación vegetal	sec	sector			,	Absolut	а					P	romed	io				Abs	soluta	muert	a/rastr	ojo			Olio	(%		iiios			(N	o. de	espe	cies)		
vegetai	Trar	Sub	МВ0	M1	M2	М3	M4	M5	М6	МВ0	M1	M2	МЗ	M4	M5	М6	МВ0	M1	M2	М3	M4	М5	М6	M1	M2	М3	M4	M5	М6	МВ0	M1	M2	М3	M4	M5	М6
	T01		207,2	118,2	164,6	153,4	122,4	132,2	130,0	51,8	29,6	41,2	38,4	30,6	33,1	32,5	-	3,2	-	-	4,2	1,6	18,0	0,8	-	-	0,8	-	-	4	4	4	4	4	4	4
	T02	D	156,6	78,6	125,0	96,6	105,6	84,2	133,0	39,2	19,7	31,3	24,2	26,4	21,1	33,3	-	30,4	30,2	36,0	29,6	47,2	24,2	-	-	-	-	-	-	4	4	4	4	4	4	4
Herbazal de	T03	Р	150,8	113,6	134,0	128,2	96,2	109,4	121,2	75,4	56,8	44,7	64,1	32,1	27,4	40,4	-	2,8	-	-	15,4	18,6	16,8	-	-	-	-	-	-	2	2	3	2	3	4	3
sca	T04		189,8	130,6	182,0	170,6	160,2	178,8	185,6	47,5	32,7	45,5	42,7	40,1	44,7	46,4	-	2,0	-	1,6	6,0	-	-	1,0	-	-	-	0,2	-	4	4	4	4	4	4	4
	T19	_	151,6	123,4	156,4	149,0	151,0	137,8	146,4	50,5	41,1	52,1	49,7	50,3	45,9	48,8	-	-	-	-	-	12,6	-	-	-	-	-	-	-	3	3	3	3	3	3	3
	T29	'	136,0	123,4	146,0	129,8	159,2	142,0	130,6	45,3	41,1	48,7	43,3	53,1	47,3	65,3	-	-	-	-	0,2	0,6	45,2	-	-	-	-	-	-	3	3	3	3	3	3	2
	T13	LP	51,6	51,6	25,4	36,0	34,0	38,6	25,2	25,8	25,8	12,7	18,0	11,3	19,3	12,6	2,0	2,0	17,8	14,8	10,4	12,6	18,8	61,2	61,6	60,2	63,0	61,4	60,8	2	2	2	2	3	2	2
Herbazal de	T18		27,6	27,6	10,4	8,6	12,0	13,2	7,2	9,2	9,2	5,2	4,3	6,0	6,6	3,6	3,4	3,4	6,4	8,4	9,4	6,4	11,2	70,6	83,8	83,0	80,6	82,2	82,0	3	3	2	2	2	2	2
jb	T30	T	43,4	38,2	35,6	34,0	37,8	31,0	29,4	14,5	19,1	11,9	11,3	12,6	10,3	9,8	6,8	5,4	13,0	9,0	9,4	15,0	13,2	63,4	56,4	60,2	56,4	59,2	61,2	3	2	3	3	3	3	3
	T31		10,4	10,4	3,0	6,2	7,0	8,8	4,8	3,5	3,5	1,0	1,0	2,3	2,9	1,6	3,4	3,4	7,6	5,6	5,6	3,4	5,2	86,2	89,4	88,2	87,8	87,8	90,0	3	3	3	6	3	3	3
Herbazal de	T08	Р	46,8	46,8	37,8	26,6	20,6	27,8	27,0	23,4	23,4	18,9	13,3	10,3	13,9	13,5	5,2	5,2	9,4	33,2	19,4	12,2	26,0	51,0	54,6	42,8	60,6	60,2	47,4	2	2	2	2	2	2	2

^{*:} Transectas T15, T16 y T17 del subsector Aguas de Quelana sin muestreo estacional en Monitoreo 6 por restricciones de acceso.

	ta	ctor								C	obertu	ıra veç	getació	n (%)												oertura s recu							iqueza			
Formación	Transecta	sect			-	Absolut	a					Pı	omedi	0				Abs	soluta	muert	a/rastr	ojo			Olio	(%		iiios			(N	lo. de	e espe	cies))	
vegetal	Trar	Subse	МВ0	M1	M2	М3	M4	M5	М6	МВ0	M1	M2	МЗ	M4	M5	М6	мво	M1	M2	М3	M4	М5	М6	M1	M2	МЗ	M4	M5	М6	МВ0	M1	M2	МЗ	M4	M5	М6
dp	T09		21,6	21,6	22,6	22,0	21,6	22,2	29,4	21,6	21,6	22,6	22,0	21,6	22,2	29,4	7,8	7,8	10,0	16,4	21,4	11,2	19,0	70,6	67,4	61,6	57,0	66,6	51,6	1	1	1	1	1	1	1
	T20		36,4	36,4	21,6	32,0	37,4	30,4	19,2	36,4	36,4	10,8	32,0	18,7	30,4	19,2	15,0	15,0	28,4	16,4	32,8	15,6	31,0	48,6	50,0	51,6	30,0	54,0	49,8	1	1	2	1	2	1	1
	T21		3,0	3,0	5,4	4,6	3,8	4,4	4,4	1,5	1,5	2,7	2,3	3,8	4,4	2,2	3,4	3,4	3,0	4,8	4,2	4,6	2,6	93,6	91,6	90,6	92,0	91,0	93,0	2	2	2	2	1	1	2
	T22	_	20,4	20,4	10,0	17,2	15,8	16,0	20,8	6,8	6,8	3,3	5,7	5,3	5,3	6,9	1,2	1,2	8,6	7,2	4,0	12,2	6,0	80,8	82,4	78,2	81,4	73,8	77,4	3	3	3	3	3	3	3
	T26	'	7,8	7,8	1,2	5,4	2,8	1,0	1,6	7,8	7,8	1,2	5,4	2,8	1,0	1,6	3,8	3,8	9,4	15,0	10,8	14,6	11,6	88,4	89,4	79,6	86,4	84,4	86,8	1	1	1	1	1	1	1
	T27		5,8	5,8	1,8	3,8	4,6	4,0	4,4	5,8	5,8	1,8	3,8	4,6	4,0	4,4	7,8	7,8	9,6	4,8	6,4	7,4	4,2	86,4	88,6	91,4	89,0	88,6	91,4	1	1	1	1	1	1	1
	T28		18,4	18,4	21,8	21,2	21,0	19,0	18,2	18,4	18,4	21,8	21,2	21,0	19,0	18,2	13,6	13,6	10,4	15,6	12,8	23,0	16,8	68,0	67,8	63,2	66,2	58,0	65,0	1	1	1	1	1	1	1
Herbazal de	T10	LB	14,6	14,6	7,6	3,6	3,6	4,0	0,6	4,9	4,9	2,5	1,2	1,2	1,3	0,2	-	-	0,4	1,4	0,6	1,2	0,8	85,4	92,2	95,2	96,0	95,2	98,8	3	3	3	3	3	3	4
tc	T11	LP	51,6	51,6	50,8	52,2	50,4	48,0	48,4	17,2	17,2	16,9	17,4	25,2	24,0	16,1	-		3,4	1,4	0,2	0,8	1,2	54,6	49,0	50,2	51,8	41,4	52,8	3	3	3	3	2	2	3
	T12	LP	38,6	38,6	27,2	32,6	28,2	31,0	23,6	12,9	12,9	9,1	32,6	14,1	31,0	23,6	3,0	3,0	2,0	3,2	7,6	8,2	10,0	59,4	71,2	64,2	64,4	60,8	66,4	3	3	3	1	2	1	1
Matorral de	T15		52,6	52,8	46,6	47,2	37,4	39,8	-	13,2	13,2	11,7	11,8	9,4	10,0	-	1,6	2,0	2,4	3,8	6,8	8,0	-	52,6	55,6	52,0	57,8	56,8	-	4	4	4	4	4	4	-
Sf	T16	AQ*	16,8	16,8	14,2	11,0	10,6	13,0	-	16,8	16,8	14,2	11,0	10,6	13,0	-	2,6	2,6	3,8	4,6	7,0	6,8	-	80,6	82,0	84,4	82,4	80,4	-	1	1	1	1	1	1	-
	T17		52,2	52,2	45,8	48,0	43,8	47,8	-	52,2	52,2	45,8	48,0	43,8	47,8	-	1,2	1,2	6,8	3,8	9,0	6,4	-	46,6	47,4	48,2	47,2	45,8	-	1	1	1	1	1	1	-
	T05		8,0	8,0	7,6	5,8	5,0	5,6	5,0	8,0	8,0	7,6	5,8	5,0	5,6	5,0	3,2	3,2	5,8	5,2	5,8	3,6	13,6	88,8	86,6	89,0	89,2	90,8	81,4	1	1	1	1	1	1	1
	T06	Р	24,6	24,6	14,2	13,6	14,8	14,4	10,0	12,3	12,3	7,1	6,8	7,4	7,2	5,0	7,0	7,0	15,2	17,8	15,4	17,0	30,6	70,0	70,6	69,6	70,8	69,6	59,8	2	2	2	2	2	2	2
	T07		20,4	20,4	13,6	9,4	16,4	14,4	11,0	20,4	20,4	13,6	9,4	16,4	14,4	2,8	4,4	4,4	7,4	9,2	4,2	6,4	13,2	75,2	79,0	81,4	79,4	79,2	76,0	1	1	1	1	1	1	4
Tb	Matorial de		17,2	17,2	9,8	10,4	6,4	11,8	4,8	17,2	17,2	9,8	10,4	6,4	11,8	4,8	6,6	6,6	12,4	13,4	14,8	14,4	21,8	76,2	77,8	76,2	78,8	73,8	73,4	1	1	1	1	1	1	1
	T24	Т	63,4	63,4	33,2	51,2	27,8	63,2	29,4	31,7	31,7	16,6	25,6	13,9	31,6	14,7	7,8	7,8	35,6	11,8	31,4	26,0	49,4	44,4	34,0	44,2	47,6	33,0	31,4	2	2	2	2	2	2	2
	T25		17,4	17,4	16,4	16,2	9,2	12,8	6,8	8,7	8,7	8,2	8,1	4,6	6,4	3,4	13,6	13,6	15,0	14,0	17,0	27,8	37,6	69,8	69,2	70,6	74,6	60,2	55,6	2	2	2	2	2	2	2

^{*:} Subsector Aguas de Quelana sin muestreo estacional en Monitoreo 6 por restricciones de acceso; y en relación a la entrega del Informe semestral M5 (invierno 2018) varían valores del subsector Tilopozo para dicha campaña por comprobarse en M6 que el taxa Cyperaceae se trataba de una etapa vegetativa (post-incendio) de S. californicus.

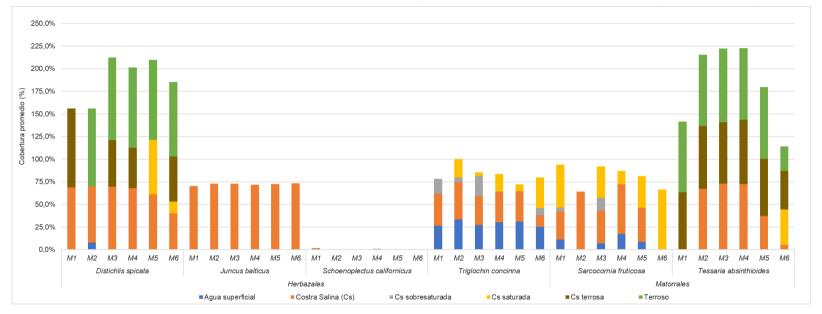
Donde: Códigos especies: sca=Schoenoplectus californicus, dp=Distichlis spicata, tc= Triglochin concinna, Sf= Sarcocomia fruticosa, Tb=Tessaria absinthioides.

Códigos subsectores: P= Peine; T= Tilopozo; LP: La Punta; LB= La Brava; AQ= Aguas de Quelana; S= Soncor.

Fuente: Elaboración propia.

Tabla N° 1-7. Cobertura absoluta promedio de otros recubrimientos en las transectas en Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6.

iento	Formación vegetal		Herbaz		choen	oplectu	s	He	rbazal d balt	de June icus	cus		ŀ	lerbaza	ıl de Di:	stichlis	spicat	а		Herba Trigle cond	ochin	Mato	rral de fruti	Sarcoc cosa	ornia	Ма	torral d	le Tessa	ıria abs	inthioi	des
Recubrimiento	Transecta/ Monitoreo	T01	T02	Т03	T04	T19	T29	T13	T18	T30	T31	T08	T09	T20	T21	T22	T26	T27	T28	T10	T11	T12	T15*	T16*	T17*	T05	T06	T07	T23	T24	T25
Œ	Sector			Р		1		LP		Т		-	•			7	Г			LB	L	P		AQ			Р			Т	
	M1	0,8																		42,0	10,8		12,4		10,2						
superficial	M2											7,6								33,4											
perf	М3																			47,2	7,4		3,2	2,6	15,4						
a su	M4	0,8																		51,4	8,8	17,2									
Agua	M5												0,2							50,2	12,0		9,4	2,4	13,8						
	M6																			49,8	0,6										
	M1				1,0			61,2	70,6	63,4	86,2	51,0	70,6	48,6	93,6	80,8			68,0	43,4	27,6	59,4		2,2							
Salina (Cs)	M2							61,6	83,8	56,4	89,4	47,0	67,4	50,0	91,6	82,4	89,4	2,2	67,8	58,8	23,2	71,2	55,6	82,0	47,4	86,6	70,6		77,8	34,0	
lina	М3							60,2	83,0	60,2	88,2	42,8	61,6		90,6	78,2	79,6		63,2	48,0	17,0	28,8	1,0	81,8	32,8		69,6		76,2		
a S	M4							63,0	80,6	56,4	87,8	60,6	19,6		92,0	81,4	86,4			44,6	23,4	32,4	57,8	82,4	47,2	89,2			78,8	47,6	74,6
Costra	M5				0,2			61,4	82,2	59,2	87,8	0,2	66,4	54,0	91,0	73,8	84,4		58,0	45,0	21,8	22,0	13,6	78,0					73,8	0,2	
0	М6							60,8	82,0	61,2	90,0	43,2	49,4		93,0	45,2		4,4	6,0	22,6	3,0								5,2		
_	M1																				16,2		3,4	4,0	6,0						
sobresaturada	M2																				5,6										
satu	М3																				21,4		14,2								
pre	M4																														
Cs sc	M5																														
0	М6																				8,0										
ada	M1																						36,8	74,4	30,4						
saturada	M2																				20,2										
Cs s	М3																				4,4	35,4	33,6								



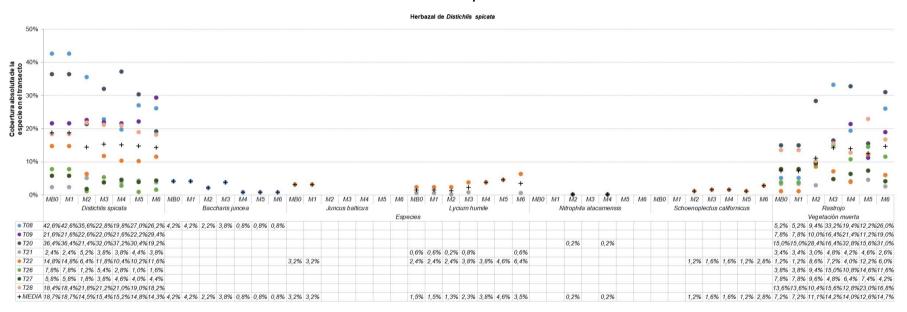
iento	Formación vegetal		Herbaz		Schoen	oplectu	ıs	He	rbazal d balti		cus		ı	Herbaza	ıl de Di	stichlis	spicat	a			zal de ochin cinna	Mato	rral de frutio		ornia	Ма	torral d	e Tessa	ria abs	inthioid	des
Recubrimiento	Transecta/ Monitoreo	T01	T02	Т03	T04	T19	T29	T13	T18	Т30	T31	T08	T09	T20	T21	T22	T26	T27	T28	T10	T11	T12	T15*	T16*	T17*	T05	T06	T07	T23	T24	T25
	Sector			P		7	Γ	LP		T		ı	•			7	Γ			LB	L	.P		AQ			Р			T	
	M4																				19,6	14,8									
	M5											60,0									7,6	38,8	33,8		32,0						
	М6											4,2	2,2			32,2				26,4	41,2	66,4								29,2	49,4
	M1																88,4	86,4											76,2	44,4	69,8
æ	M2																														69,2
Cs terrosa	М3													51,6												89,0				44,2	70,6
s te	M4												37,4	30,0					66,2								70,8				
0	M5																									90,8	69,6			32,8	60,2
	М6													49,8			86,8	4,6	59,0							81,4	57,6		64,6	2,2	6,2
	M1																									88,8	70,0	75,2			
	M2																	86,4										79,0			
oso	М3																	91,4										81,4			
Terroso	M4																	89,0										79,4			
'	M5																	88,6										79,2			
	М6																	82,4									2,2	76,0	3,6		
	M1	0,8	0,0	0,0	1,0	0,0	0,0	61,2	70,6	63,4	86,2	51,0	70,6	48,6	93,6	80,8	88,4	86,4	68,0	85,4	54,6	59,4	52,6	80,6	46,6	88,8	70,0	75,2	76,2	44,4	69,8
	M2	0,0	0,0	0,0	0,0	0,0	0,0	61,6	83,8	56,4	89,4	54,6	67,4	50,0	91,6	82,4	89,4	88,6	67,8	92,2	49,0	71,2	55,6	82,0	47,4	86,6	70,6	79,0	77,8	34,0	69,2
(%)	М3	0,0	0,0	0,0	0,0	0,0	0,0	60,2	83,0	60,2	88,2	42,8	61,6	51,6	90,6	78,2	79,6	91,4	63,2	95,2	50,2	64,2	52,0	84,4	48,2	89,0	69,6	81,4	76,2	44,2	70,6
Total (%)	M4	0,8	0,0	0,0	0,0	0,0	0,0	63,0	80,6	56,4	87,8	60,6	57,0	30,0	92,0	81,4	86,4	89,0	66,2	96,0	51,8	64,4	57,8	82,4	47,2	89,2	70,8	79,4%	78,8	47,6	74,6
	M5	0,0	0,0	0,0	0,2	0,0	0,0	61,4	82,2	59,2	87,8	60,2	66,6	54,0	91,0	73,8	84,4	88,6	58,0	95,2	41,4	60,8	56,8	80,4	45,8	90,8	69,6	79,2	73,8	33,0	60,2
	M6	0,0	0,0	0,0	0,0	0,0	0,0	60,8	82,0	61,2	90,0	47,4	51,6	49,8	93,0	77,4	86,8	91,4	65,0	98,8	52,8	66,4	0,0	0,0	0,0	81,4	59,8	76,0	73,4	31,4	55,6

*: Sector Aguas de Quelana sin muestreo estacional en Monitoreo 6 por restricciones de acceso.

Figura N° 1-1. Cobertura promedio de otros recubrimientos por formación vegetal en los monitoreos M1, M2, M3, M4, M5 y M6: herbazales y matorrales.

Donde: M1 monitoreo iniverno 2016, M2 monitoreo verano 2017, M3 monitoreo iniverno 2017, M4 monitoreo verano 2018, M5 invierno 2018, M6 monitoreo verano 2019; En Aguas de Quelana no hay datos promedios en M6 por restricciones de acceso al área, por lo tanto no se muestrearon tres de las cuatro transectas de la formación de matorral de S. fruticosa.

Fuente: Elaboración propia.


Tabla N° 1-8. Cobertura promedio por sectores, para el Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6*.

	No de					Prome	dio de la	cobertu	ıra abso	luta por	sector							F	Riqueza	l		
Sector	Transectas en el			Veg	jetación	(%)				Veg	etación r	nuerta -	Rastrojo	(%)				(No. c	le espe	cies)		
	sector	MB0	M1	M2	M3	M4	M5	M6	MB0	M1	M2	М3	M4	M5	M6	MB0	M1	M2	М3	M4	M5	M6
La Punta y La Brava	4	39,1%	39,1%	27,8%	31,1%	29,1%	30,4%	24,5%	1,3%	1,3%	5,9%	5,2%	4,7%	5,7%	7,7%	6	6	6	6	7	6	6
Peine	9	91,8%	62,5%	77,9%	69,6%	62,5%	65,4%	72,5%	3,1%	7,3%	8,7%	13,3%	13,5%	13,1%	17,9%	5	5	5	5	5	5	8
Aguas de Quelana**	3	40,5%	40,6%	35,5%	35,4%	30,6%	33,5%	-	1,8%	1,9%	4,3%	4,1%	7,6%	7,1%	-	4	4	4	4	4	4	-
Soncor	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tilopozo	14	39,9%	36,6%	33,8%	35,0%	35,4%	35,4%	30,6%	6,2%	6,1%	11,4%	9,0%	11,3%	13,1%	18,3%	6	6	6	6	7	6	6

^{*:} En relación a la entrega del Informe semestral M5 (invierno 2018) varían los valores del sector Tilopozo para dicha campaña por comprobarse en M6 que el taxa Cyperaceae se trataba de una etapa vegetativa (post-incendio) de Schoenoplectus californicus. **: Subsector Aguas de Quelana sin muestreo estacional en Monitoreo 6 por restricciones de acceso.

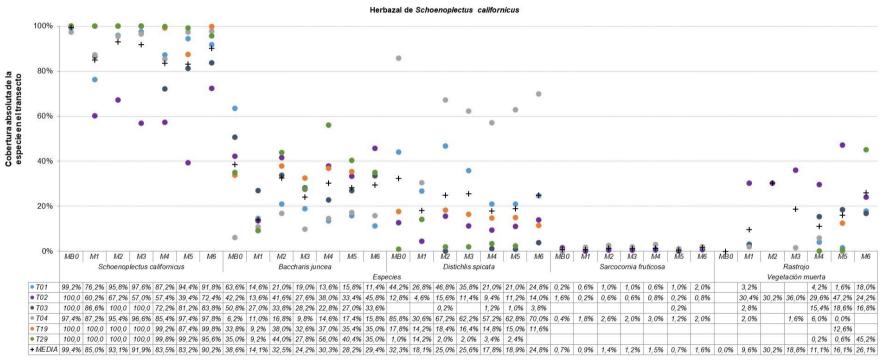
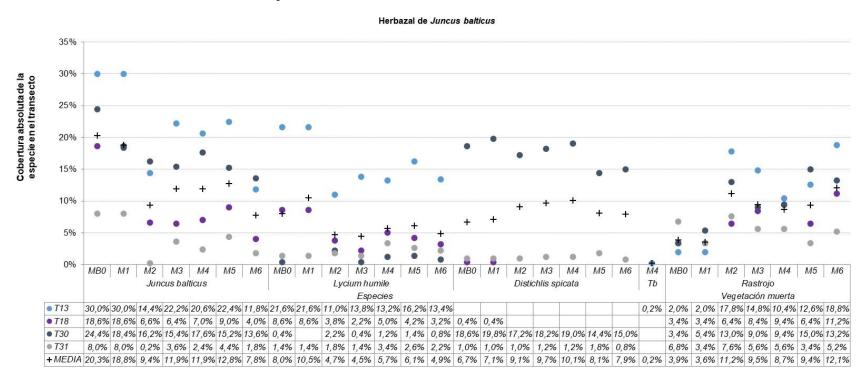


Figura N° 1-2. Cobertura absoluta de las especies registradas en las transectas de Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación de herbazal de Distichlis spicata.

Plan de Manejo Biótico

Figura N° 1-3. Cobertura absoluta de las especies registradas en las transectas de Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación de herbazal de Schoenoplectus californicus*.



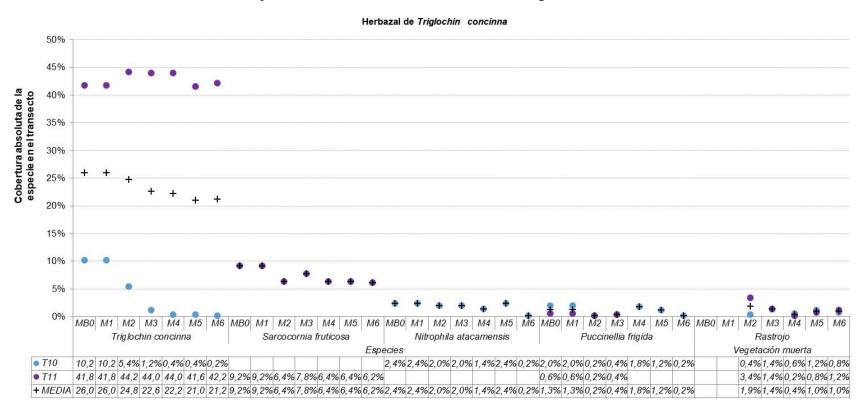
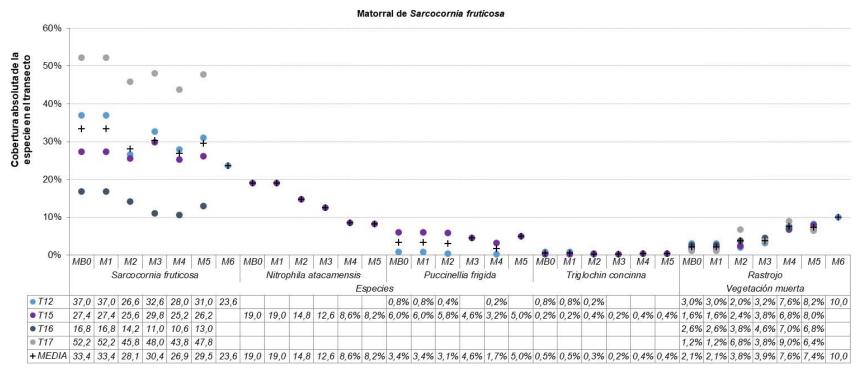
^{*:} En relación a la entrega del Informe semestral M5 (invierno 2018) no se incluye el taxa Cyperaceae, por comprobarse en M6 que se trataba de una etapa vegetativa (post-incendio) de S. californicus.

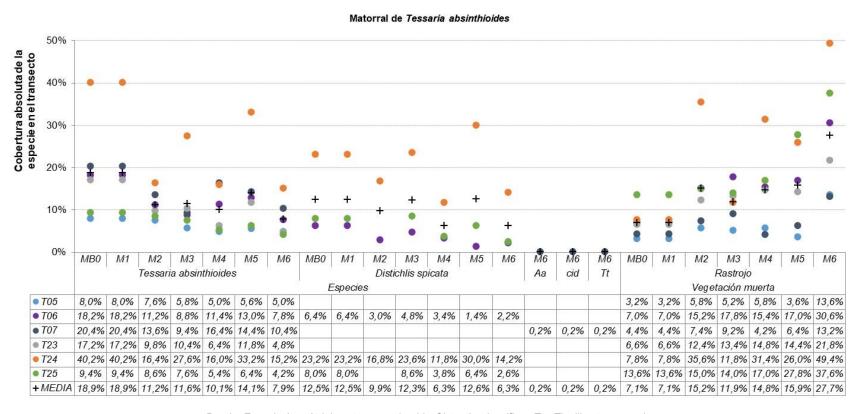
Fuente: Elaboración propia.

Figura N° 1-4. Cobertura absoluta de las especies registradas en las transectas de Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación de herbazal de *Juncus balticus*.

Donde: Especie Tb=*Tessaria absinthioides*. Fuente: Elaboración propia.

Figura N° 1-5. Cobertura absoluta de las especies registradas en las transectas de Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación de herbazal de *Triglochin concinna*.


Figura N° 1-6. Cobertura absoluta de las especies registradas en las transectas de Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación de matorral de *Sarcocornia fruticosa**.

^{*:} Transectas T15, T16 y T17 del subsector Aguas de Quelana sin muestreo estacional en Monitoreo 6 por restricciones de acceso. Fuente: Elaboración propia.

Figura N° 1-7. Cobertura absoluta de las especies registradas en las transectas de Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6, en la formación de matorral de *Tessaria absinthioides*.

Donde: Especie Aa= Atriplex atacamensis; cid= Cistanthe densiflora; Tt= Tiquilia atacamensis.

Fuente: Elaboración propia.

Tabla N° 1-9. Composición de especies vasculares por sectores, para el Monitoreo Base 0 (MB0), M1, M2, M3, M4, M5 y M6*.

																Sub	secto	r Áre	a de	estuc	lio														
Especie			L	a Bra	ıva					L	a Pur	nta						Pein	е					Agua	s de (Quela	na				Т	ilopo	zo		
Especie	M B 0	M1	M2	М3	M4	M5	М6	M B 0	M1	M2	М3	M4	M5	М6	M B 0	M1	M2	М3	M4	M5	М6	М В 0	M1	M2	М3	M4	M5	М6	M B 0	M1	M2	М3	M4	M5	М6
Atriplex atacamensis Phil.																					х													ı	
Baccharis juncea (Cass.) Desf.															Х	х	х	Х	х	Х	х								Х	Х	х	Х	Х	Х	Х
Cistanthe densiflora (Barnéoud) Hershkovitz																					Х														
Distichlis spicata (L.) Greene															х	х	х	х	х	х	х								х	х	х	х	х	х	х
Juncus balticus Willd.								х	х	х	х	х	х	х															х	х	х	х	х	х	х
Lycium humile Phil.								х	х	х	х	х	х	х															Х	х	х	х	х	Х	х
Nitrophila atacamensis (Phil.) Hieron. ex Ulbr.	х	х	Х	Х	х	х	х															х	х	х	х	х	Х				х		Х	1	
Puccinellia frigida (Phil.) I.M.Johnst.	Х	х	х	х	Х	х	х	х	Х	х	Х	х										х	х	х	х	х	Х							1	
Sarcocornia fruticosa (L.) Scott								х	х	х	х		х	х	х	х	х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х								
Schoenoplectus californicus (C.A. Mey.) Soják												Х			Х	Х	Х	Х	Х	Х	Х								Х	Х	Х	Х	Х	Х	Х
Tessaria absinthioides (Hook. & Arn.) DC.												х			х	х	х	х	х	х	х								х	х	х	х	х	х	х
Tiquilia atacamensis (Phil.) A.T. Richardson																					х														
Triglochin concinna Davy	х	Х	Х	Х	х	Х	Х	х	х	х	х	х	х	х								Х	Х	Х	Х	Х	Х								
Riqueza total por Monitoreo	3	3	3	3	3	3	3	5	5	5	5	6	4	4	5	5	5	5	5	5	8	4	4	4	4	4	4	-	6	6	7	6	7	6	6
Riqueza total por Sector				3							7							8							4							7			

^{*:} En relación a la entrega del Informe semestral M5 (invierno 2018) no se incluye el taxa Cyperaceae, por comprobarse en M6 que se trataba de una etapa vegetativa (post-incendio) de Schoenoplectus californicus, variando los valores de riqueza para el subsector de Tilopozo.

Plan de Maneio Biótico

1.8 Evidencias de quemas en los sectores Tilopozo y Peine

En el desarrollo de los monitoreos semestrales realizados a la fecha, se constataron incendios en dos sectores, los que involucraron superficies de formaciones vegetales monitoreadas en el contexto del Plan de Manejo Biótico, comprometido en el Proyecto "Modificaciones y Mejoramiento del Sistema de Pozas de Evaporación Solar en el Salar de Atacama, Región de Antofagasta" de Rockwood Lithium, aprobado por Resolución de Calificación Ambiental (RCA) mediante RCA Nº 21 de fecha 20 de enero del 2016.

Para el primero de ellos, registrado en septiembre de 2017 en el sector Tilopozo, se realizó un trabajo de diagnóstico del área afectada por el incendio, y en cuanto al segundo, se registraron evidencias de quemas en marzo (verano) de 2019 en el sector Peine, presentados en los Anexos del informe semestral M6. Estos diagnósticos y registros se presentan a continuación.

1.8.1 Diagnóstico del área afectada por incendio en el sector de Tilopozo (octubre 2017)

El área afectada por el incendio se ubica en el sector de Tilopozo, a aproximadamente 22 km al sureste de Área de Planta, siguiendo el camino paralelo a la ruta B-385. La ubicación descrita se grafica en la Figura N° 1-8. El incendio se produjo la semana del 4 de septiembre y se realizó la campaña de reconocimiento de terreno los días 27 y 28 de septiembre.

Se realizó un recorrido pedestre rodeando el área visiblemente afectada, para diagnosticar la afectación de la vegetación en el área donde ocurrió el incendio. Los rangos de daño se clasificaron en: (i) vegetación severamente afectada, cuando el daño visible afecta la sección aérea y subterránea de la vegetación, incluyendo cenizas que recubren el suelo o sectores aún más profundos, y (ii) vegetación parcialmente afectada, cuando el daño es en sólo estructuras aéreas de la vegetación o parte de ellas (**Fotografía N° 1-1**; Figura N° 1-10). Además, se complementó con imágenes RGB obtenidas desde un *Drone*, con el fin de clasificar la afectación de la vegetación, lo que se compara con lo graficado a partir de los datos GPS de mayor precisión (Figura N° 1-9).

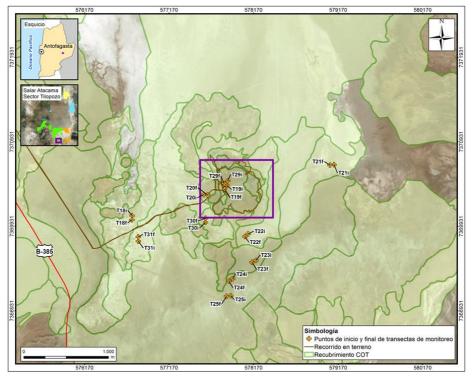
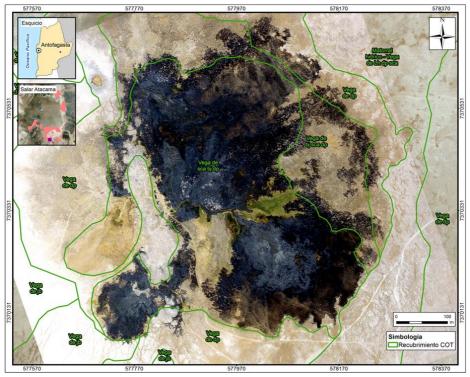
A continuación, se presentan los principales resultados:

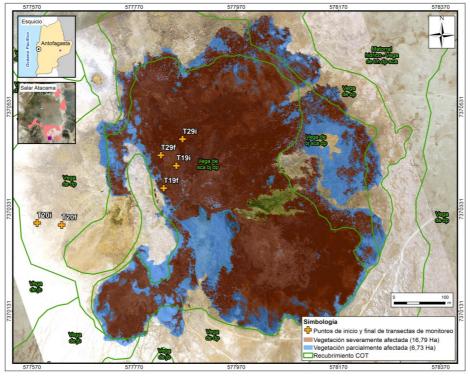
- De acuerdo con el estudio realizado, la superficie afectada por el incendio corresponde a 23,53 hectáreas, superficie correspondiente a polígonos de formaciones de: (i) Vega de Schoenoplectus californicus, Baccharis juncea y Distichlis spicata, (ii) Vega de Baccharis juncea, Schoenoplectus californicus y Distichlis spicata, (iii) Vega de Distichlis spicata, (iv) Vega de Juncus balticus, (v) Matorral hídrico Vega de Lycium humile, Distichlis spicata y Schoenoplectus californicus, y en muy menor magnitud de afectación, (vi) el recubrimiento de suelo Área desprovista de vegetación Salar, que en el sector expone una cubierta aislada de vegetación muy escasa (Tabla N° 1-10).
- La formación vegetal más afectada es Schoenoplectus californicus, Baccharis juncea y Distichlis spicata, con 14,27 hectáreas afectadas, equivalente a un 70,76% del polígono correspondiente a esa formación vegetal. Esta formación expone también la mayor superficie parcialmente afectada, correspondiente a 3,26 hectáreas, equivalente a un 16,17% del polígono señalado. Sin embargo, en la formación de Vega de Baccharis juncea, Schoenoplectus californicus y Distichlis spicata, corresponde a la mayor afectación parcial en términos porcentuales 27,14% (Tabla N° 1-11).
- En cuanto a la menor superficie severamente afectada, ésta corresponde a la formación de Matorral hídrico Vega de Lycium humile, Distichlis spicata y Schoenoplectus californicus, superficie sustancialmente menor por lo que se aproximó a 0. Esta formación además expone la menor superficie de vegetación parcialmente afectada, correspondiente a 0,03 hectáreas, equivalente a un 0,19% del polígono afectado, lo que es un aspecto favorable, ya que esta formación está representada por sólo un polígono en toda la COT (Tabla N° 1-11).

- Existen dos transectas de monitoreo dentro del área clasificada como "vegetación severamente afectada": T19 y T29 (Fotografía N° 1-2), las que describen una formación vegetal de Herbazal de Schoenoplectus californicus (RWL, 2017).
- Se observa la aparición de numerosos individuos nuevos de Schoenoplectus californicus, Baccharis juncea y Distichlis spicata en la superficie severamente afectada (Fotografía N° 1-3-D).
- Se detectó el avance del fuego en forma subterránea, específicamente en las coordenadas E: 577.791 y N: 7.370.624, lo que fue informado durante la realización de la campaña de terreno (Fotografía N° 1-3-E).
- Dadas las características observadas del sitio, la existencia de ganado en el sector y a la infraestructura de crianceros, es muy probable que este incedio corresponda a una técnica de manejo de recursos con el fin de preservar la flora, ya que la práctica de quema de vegas se utiliza para su renovación y mejoramiento de la visibilidad (VILLAGRÁN, C. et al, 2003).

Posteriormente, durante el muestreo del monitoreo siguiente a la data del incendio (M6) se corroboró una recuperación de la cobertura vegetal afectada, registrada tanto en la caracterización de la vegetación a través de los puntos COT en el área y en las transectas T19 y T29 donde la cobertura total de las transectas fue inclusive mayor a lo registrado en el monitoreo anterior (M5).

Figura N° 1-8. Ubicación superficie afectada por el incendio en el sector Tilopozo.


Figura N° 1-9. Imagen RGB obtenida desde el Drone (altura 500 m) en el sector Tilopozo.

Fotografía N° 1-1. A) Daño parcial en la vegetación, B) Daño severo en la vegetación.

Figura Nº 1-10. Clasificación de la vegetación según el daño visible por el incendio.

Fotografía N° 1-2. C) Vista general de la transecta T19, D) Vista general de la transecta T29.

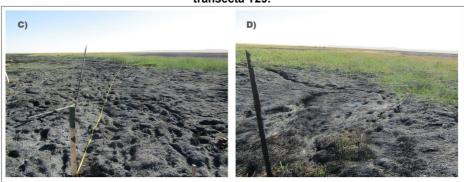


Tabla N° 1-10. Superficie afectada respecto de la COT.

Formación Vegetal / Recubrimiento de	Cobertura	Superficie to vegeta	tal formación al COT	Superficie a		Superficie afectada respecto
suelo	СОТ	Superficie (ha)	N° de polígonos	Superficie (ha)	N° de polígonos	del total (%)
Área desprovista de vegetación – Salar (Cobertura de vegetación muy escasa)	-	23.424,75	33	0	1	0
Matorral hídrico - Vega de Lh dp sca	LB4H4	16,48	1	0,03	1	0,19
Vega de bj sca dp	H6	9,00	2	3,92	1	43,60
Vega de dp	H5	38,61	5	1,99	2	5,14
Vega de jb	H4	125,04	4	0,06	1	0,05
Vega de sca bj dp	H7	32,81	4	17,53	1	53,44

Formación Vegetal / Recubrimiento de	Cobertura	Superficie to vegeta	tal formación al COT	Superficie a ince		Superficie afectada respecto
suelo	СОТ	Superficie (ha)	N° de polígonos	Superficie (ha)	N° de polígonos	del total (%)
Total		23.646,69	49	23,53	7	0,10
Donde:						

COT: Carta Ocupación de Tierras Coberturas (%): Tipo Biológico: Especies: LB: 1 muy escasa (<5) Leñoso Bajo (arbustivo) Baccharis juncea 2 escasa (5-10) H: Herbáceo dp: Distichlis spicata 3 muy clara (10-25) Otras coberturas COT: jb: Juncus balticus 4 clara (25-50) Lh: Lycium humile 5 poco densa (50-75) ADV: Áreas desprovistas de vegetación sca Schoenoplectus americanus 6 densa (75-90) 7 muy densa (>90)

Fuente: Elaboración propia.

Tabla N° 1-11. Superficie parcial y severamente afectada por incendio.

Formación Vegetal / Recubrimiento de suelo afectados	Cobertura COT	Superficie de polígonos afectados	parcia	ación Imente tada	Vegeta severa afect	mente	Superficie total afectada
		(ha)	ha	%	ha	%	(ha)
Área desprovista de vegetación – Salar (Cobertura de vegetación muy escasa)	-	730,02	-	-	0*	0	0
Matorral hídrico - Vega de Lh dp sca	LB4H4	16,48	0,03	0,19	0**	0	0,03
Vega de bj sca dp	H6	7,52	2,04	27,14	1,88	25,05	3,92
Vega de dp	H5	22,97	1,35	5,86	0,64	2,79	1,99
Vega de jb	H4	16,18	0,06	0,35	0,00	0,03	0,06
Vega de sca bj dp	H7	20,17	3,26	16,17	14,27	70,76	17,53
Total		813,34	6,73	0,83	16,80	2,07	23,53

*0,00003 ha (0,000004%); **0,00001 ha (0,00008%) Fuente: Elaboración propia.

Fotografía N° 1-3. E) Avance subterráneo del incendio T19, D) Renovación general de la vegetación.

1.8.2 Evidencias de quema en sector Peine (verano 2019)

Durante el monitoreo de verano realizado en marzo de 2019 (M6), se registraron evidencias de quema en el sector Peine, en el punto COT VPR003 y las transectas T01 y T03 (**Fotografía N° 1-4**), correspondientes a la formación vega de *Schoenoplectus californicus* y *Baccharis juncea*. Por el tipo y localización de las evidencias, no se puede corroborar una data de las quemas, pero sí se puede interpretar que fue posterior al monitoreo de invierno de 2018 (agosto en M5).

Si bien se corrobora esta intervención en el área, a través de los muestreos en M6 se observa una recuperación de la cobertura vegetal, registrando en los puntos COT una fisonomía y estructura similar a la registrada en monitoreos anteriores. En el caso de las transectas afectadas, se observó una recuperación de la cobertura vegetal absoluta por transecta y por especie, y la diferencia se detectó en mayor cobertura de rastrojos en algunos casos. No obstante, esta alteración pudo influir en los resultados de la vegetación activa modificando los valores de NDVI: si bien, en la Figura N° 1-12 no se observan mayores diferencias de NDVI entre monitoreos de verano (2018-2019), una diferencia en la reflectancia de la vegetación activa se refleja con el análisis de la imagen de alta resolución en falso color en la Figura N° 1-11, lo que pudo incidir en la disminución de los valores de NDVI en el sector de Peine.

Fotografía N° 1-4. Presencia de quemas en las transectas VPR003, T01 y T03 en el sector de Peine.

Figura N° 1-11. Análisis en base a imagen de alta resolución con falso color, en el área de quema del sector Peine, con fecha de los monitoreos de verano de 2018 y 2019.

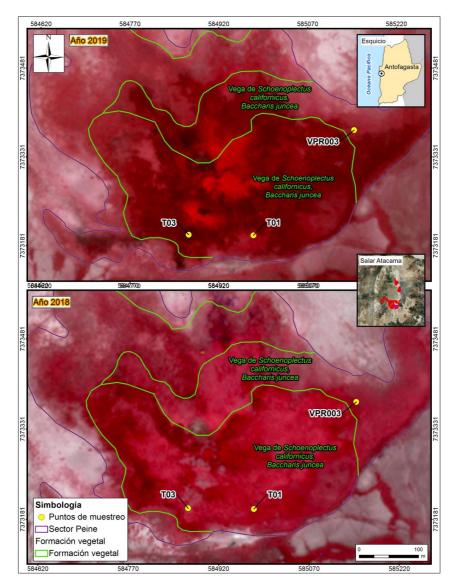
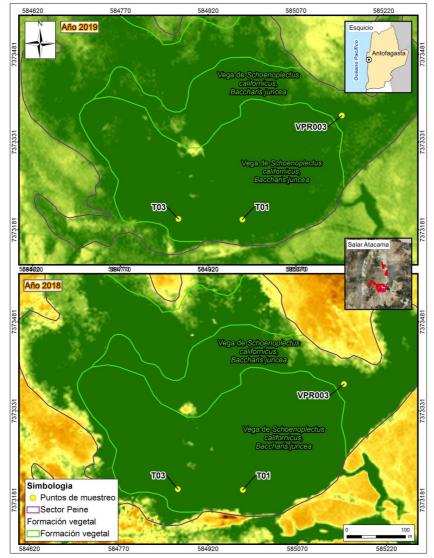



Figura N° 1-12. Análisis de NDVI en el área de quema del sector Peine, en base a imagen de alta resolución con fecha de los monitoreos de verano de 2018 y 2019.

